Z. Abou-Assaleh, Ph.D.

Home Biography Links Contact

  

 

Citations Index >>>

Articles With Citations to Z. Abou-Assaleh

Theoretical Plasma Physics

Controlled Thermonuclear Fusion Energy

 

2013

 
 
 2013 No 02
 
https://iopscience.iop.org/article/

/2010/13ja/13ja031/13ja031_full.pdf

Plasma Physics and Controlled Fusion
Published 30 July 2013 • © 2013 IOP Publishing Ltd
Plasma Physics and Controlled Fusion, Volume 55, Number 9

An assessment of ion temperature measurements in the boundary of the Alcator C-Mod tokamak and implications for ion fluid heat flux limiters.

D Brunner1, B LaBombard1, R M Churchill1, J Hughes1, B Lipschultz1, R Ochoukov1, T D Rognlien2,

C Theiler1, J Walk1, M V Umansky2, and D Whyte1

1MIT PSFC Cambridge, MA 02139 USA.

2LLNL, Livermore, CA 94550, USA.

Abstract

The ion temperature is not frequently measured in the boundary of magnetic fusion devices. Comparisons among different ion temperature techniques and simulations are even rarer. Here we present a comparison of ion temperature measurements in the boundary of the Alcator C-Mod tokamak from three different diagnostics: charge exchange recombination spectroscopy, an ion sensitive probe, and a retarding field analyzer. Comparison between charge exchange recombination spectroscopy and the ion sensitive probe along with close examination of the ion sensitive probe measurements reveals that the ion sensitive probe is space charge limited. It is thus unable to measure ion temperature in the high density (>1019 m-3) boundary plasma of C-Mod with its present geometry. Comparison of ion temperatures measured by charge exchange recombination spectroscopy and the retarding field analyzer shows fair agreement. Ion and electron parallel heat flow is analyzed with a simple 1D fluid code. The code takes divertor measurements as input and results are compared to the measured ratios of upstream ion to electron temperature, as inferred respectively by charge exchange recombination spectroscopy and a Langmuir probe. The analysis reveals the limits of the fluid model at high Knudsen number. The upstream temperature ratio is under predicted by a factor of 2. Heat flux limiters (kinetic corrections) to the fluid model are necessary to match experimental data. The values required are found to be close to those reported in kinetic simulations. The 1D code is benchmarked against the 2D plasma fluid code UEDGE with good agreement.

References

...

[55] Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and R. Marchand, Contributions to Plasma Physics 32, 268 (1992).

[56] Z. Abou-Assaleh, M. Petravic, R. Vesey, J. P. Matte, and T. W. Johnston, Contributions to Plasma Physics 34, 175 (1994).

...

full.pdf

 2013 No 01
 

https://link.springer.com

Transport Processes

Published: 17 September 2013

Nonlocal transport in hot plasma.

Part I

A. V. Brantov & V. Yu. Bychenkov

Plasma Physics Reports volume 39, pages698–744(2013)Cite this article

Abstract

The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 1013–1016 W/cm2.

References

...

59.  J. N. Rogers, J. S. De Groot, Z. Abbou-Assaleh, et al., Phys. Fluids B 1, 741 (1989).

...

 
 
 

links/.pdf

ISSN 1063780X, Plasma Physics Reports, 2013, Vol. 39, No. 9, pp. 698–744. © Pleiades Publishing, Ltd., 2013.

Original Russian Text © A.V. Brantov, V.Yu. Bychenkov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 9, pp. 786–836.

Nonlocal Transport in Hot Plasma. Part I

A. V. Brantov and V. Yu. Bychenkov

Lebedev Physical Institute, Russian Academy of Sciences, Leninskiii pr. 53, Moscow, 119991 Russia

Dukhov AllRussia Research Institute of Automatics, Mospochtamt a/ya 918, Moscow, 101000 Russia

Abstract

The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a selfconsistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclas sical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 1013–1016 W/cm2.

DOI: 10.1134/S1063780X13090018

REFERENCES

59. J. N. Rogers, J. S. De Groot, Z. AbbouAssaleh, et al., Phys. Fluids B 1, 741 (1989).

 
 
 
https://www.elibrary.ru/item.asp?id=20130263

eLIBRARY ID: 20130263 DOI: 10.7868/S0367292113090011

ЖУРНАЛ:

ФИЗИКА ПЛАЗМЫ
Учредители: ФИЦ "Институт общей физики им. А.М. Прохорова РАН", Национальный исследовательский центр "Курчатовский институт", Российская академия наук, Российская академия наук (Москва)
ISSN:
0367-2921

АННОТАЦИЯ:

Проблема описания переноса заряженных частиц в горячей плазме, когда отношение длины свободного пробега электронов к градиентной длине не очень мало, является одной из ключевых проблем физики плазмы. Однако до сих пор ощущается дефицит системного изложения современного состояния этого вопроса, который в большинстве работ формулируется как проблема нелокального переноса. Настоящим обзором мы восполняем этот пробел, излагая последовательную линейную теорию нелокального переноса для малых возмущений плазмы с произвольной столкновительностью от классического гидродинамического режима сильных столкновений до бесстолкновительного режима, описывая ряд нелинейных моделей переноса и демонстрируя применения теории неклассического переноса для решения ряда задач физики плазмы, прежде всего для плазмы, создаваемой наносекундными лазерными импульсами с интенсивностями 1013 1016 Вт/см2.

 
 
 
https://link.springer.com/article/

10.1134/S1063780X14060026

Published: 15 July 2014
Nonlocal transport in hot plasma. Part II
A. V. Brantov & V. Yu. Bychenkov
Plasma Physics Reports volume 40, pages505–563(2014)Cite this article

Abstract
The second part of the review, the first part of which was published earlier in Plasma Phys. Rep. 39, 698 (2013), is presented. A wide range of electromagnetic phenomena in laser plasma under nonlocal transport conditions requiring kinetic consideration are described. Among them, there are nonlocal transport in magnetized plasma, absorption and penetration of laser radiation in dense plasma, nonlocal effects related to inverse-bremsstrahlung heating and ponderomotive interaction, plasma fluctuations caused by a speckled laser beam, propagation of laser radiation and parametric instabilities in low-density plasma, and ion-acoustic instability of the return current. Many results are applicable for arbitrary relations between the characteristic spatial and time scales of the plasma parameters, which substantially advances the concept of laser-plasma interaction in hot plasma as compared to the conventional theories of collisionless and strongly collisional plasmas.

 
 

Citations Index >>>

Home Biography Links Contact

Copyright © Dr. Z. ABOU-ASSALEH